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1. INTRODUCTION 

1.1 Background 

The Archimedean axiom has its roots in ancient mathematics, where it was used 
to banish from consideration both infinitely large and infinitesimally small quan- 
tities. This was essentially the only rigorous means available to eliminate such 
quantities until very late in the nineteenth century when G. Cantor gave a fully 
rigorous description of the continuum in terms of an ordering relation. In a great 
many contexts, Cantor's method provides a different means for eliminating the 
infinitely large and small. Although the two approaches are quite different, they 
are interrelated in subtle ways. Part of this chapter focuses on such relationships. 

Both the Archimedean and Cantorian approaches to the continuum use sec- 
ond-order logical concepts in their formulations. As will follow from results 
presented subsequently, some sort of higher-order logical concept is necessary in 
any description of the continuum. Thus, in particular, any part of science that 
uses the continuum necessarily assumes higher-order concepts. 

Many who work in the foundations of science believe higher-order concepts to 
be inherently nonempirical and, thus, believe that scientific concepts based on a 
continuum include some nonempirical component. A similar situation exists for 
those scientific concepts that foundationally have bases in situations less rich 
than the continuum but nevertheless require imbeddability into structures based 
on the continuum. Usually an Archimedean axiom is used to effect the imbed- 
ding. Therefore, it is not surprising that each coherent, effective program for 
science to emerge has incorporated a theory of measurement based on some 
higher-order concept. 
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In practice, the Cantor axioms have not been widely used in measurement 
theory because of the nonconstructive nature of the axiom postulating the exis- 
tence of a countable, order-dense subset (see below). Preference has been ac- 
corded the more constructive Archimedean approach, when it is available. 

Historically, to assure that all magnitudes and differences of magnitudes are 
commensurable, the concept of Archimedeanness has been defined in terms of an 
operation, usually assumed to be associative. Its justification in these contexts 
has consisted in trying to make intuitively clear that, in terms of recursively 
generated applications of the operation as a method of determining size, no 
element is infinitely large with respect to another and that no two elements are 
infinitesimally close together. In this chapter, we seek to extend the concept of 
Archimedeanness-of commensurability-to general structures that may have 
no operation among its defining relations (primitives). In such situations, we see 
no way to keep Archimedeanness from becoming a much more abstract notion 
and correspondingly a much more difficult one to justify as correct. 

Our approach is to formulate, in a very general fashion, what Archimedean- 
ness should accomplish and then show that this imposes severe restrictions that 
are satisfied by only one concept (up to logical equivalence). In this approach, 
the resulting concept of Archimedeanness will be justified by theorems; intuition 
will play a role only at the beginning stages in stating what should be accom- 
plished. Many of the theorems are difficult to prove and require concepts of 
abstract algebra, particularly those of group theory. No proofs will be presented 
in this paper, but references are provided to the original publications. Most of 
them can also be found in Luce, Krantz, Suppes, and Tversky (1990). 

Our basic goal is to find the correct general concept and to justify it as such. 
Unfortunately our theory of Archimedeanness is not yet completely worked out; 
there are important gaps, which will be indicated throughout the chapter often as 
conjectures, tantalizing ideas, or unresolved technical questions. 

1.2 The Research Agenda 

Cantor (1895) gave the following simple and elegant characterization of the 
continuum: C = (X, >) is said to be a continuum, if and only if the following 
three conditions are met: 

1. C is a totally ordered set without endpoints. 
2. C is Dedekind complete (i.e., each nonempty bounded subset of X has a 

least upper bound in X). 
3. There is a denumerable subset Y of X that is order dense in X (i.e., for each 

x ,  y in X, there exists z in Y such that x > z > y). 

'Throughout this chapter, we consider only continuua without endpoints. The results easily 
generalize to situations with either one or two endpoints. 
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Cantor proved that each continuum is isomorphic to the ordered positive real 
numbers, which we designate as (Ref ,  2). 

Historically one of the principal uses made of Archimedean axioms was to 
establish the isomorphic imbedding of structures into ones based on a continuum. 
We take this to be a principal characteristic of Archimedeanness. The basic idea 
is as follows. 

There are certain structures that shall be taken to be intrinsically Archime- 
dean-we discuss what this might mean shortly. Such structures will take the 
following general form: (X, 2,  R,, . . . , R,, . . . ), where the R, may be ele- 
ments of X, relations on X, relations of relations of X, and so on, and (X, >) is a 
continuum, and certain other conditions are satisfied that will be stated later. 
None of the R, need be an operation or partial operation. A structure Y = (S, 2, 
S,, . . . , Si, . . . ) is said to be Archimedean if and only if there is an intrin- 
sically Archimedean structure ZX' and an isomorphism 4 from Y into 2 such that 
+(S) is a dense subset of an open interval of X. This definition consciously omits 
cases where the ordering on S may be discrete or have gaps in it. There are 
obviously discrete structures that are Archimedean (e.g., ( I+ ,  2, +), where I+ 
is the positive integers), and the approach presented in this chapter can be 
extended to such cases. 

Given the general framework of distinguishing intrinsically Archimedean and 
Archimedean structures, the plan of the research is obvious: Provide a precise 
definition of intrinsically Archimedean, argue that it is the correct one, and then 
describe conditions that allow other structures to be appropriately imbedded into 
intrinsically Archimedean ones. Unfortunately this seems to be a difficult plan to 
carry out, and, as was mentioned, only partial results can be reported at this time. 
Mainly they concern attempts to capture the concept of intrinsic Archimedean- 
ness. In fact, this chapter could well be entitled "Seeking the intrinsically 
Archimedean." 

2. POSITIVE CONCATENATION STRUCTURES 

2.1 Archimedeanness in Standard Sequences 

Archimedeanness has been traditionally defined in terms of operations, for which 
the following algebraic concepts are useful. 

Let ZX' = (X, >, , 0 )  be such that X is a nonempty set, 2 is a binary relation on 
X, and 0 is a binary (closed) operation on X. Then ZX' is said to be a concatena- 
tion structure2 if and only if the following four conditions are met: 

- - 

2The general concept of a concatenation structure in the literature (e .g. ,  Narens & Luce, 1976; 
Luce & Narens, 1985) assumes 0 is a partial, not a closed, operation and does not assume density. 
We are. mainly concerned here with homogeneous structures, which are necessarily closed, and with 
the continuum, which is dense; thus, it is convenient to use the more restrictive definition. 
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1. X has at least two elements. 
2. >, is a total ordering. 
3. (X, 2)  is dense. 
4. 0 is (strictly) monotonic in each variable (i.e., for all x, y, z in X, x 2 y 

x o z  2 y o z  - zox 2 zOy). 

The operation 0 is said to be 

Positive if and only if xOy > x and xOy > y for all x, y in X. 
Associative if and only if xOCyOz) = (xOy)Oz for all x, y, z in X. 
Commutative if and only if xOy = yOx for all x, y in X. 
Idempotent if and only if xOx = x for all x in X. 

Further, % is said to be Archimedean in standard sequences, often written ss- 
Archimedean, if and only if for each x and y in X, there exists a positive integer n 
such that nr > y, where the standard sequence {ku} is defined inductively as 
follows: l x  = x, and for k > 1, kr = [(k - l)x]Ox. 

Note that, for positive structures, standard sequences are increasing, and so 
ss-Archimedeanness can be used to say there are no infinitely large elements. 
However, for idempotent structures, ss-Archimedeanness is false, because ku = 

x for all positive integers k. Other forms of the Archimedean axiom will be given 
later that apply to both positive and nonpositive structures. 

2.2 A Problematic Example 

Example 2 below will show that ss-Archimedeanness is problematic even for 
positive operations, but first we present a nonproblematic example. 

EXAMPLE 1. Let 8, = (Re+,  2, +). 8, is defined on a continuum and is 
positive, associative, and commutative. 8, is an archetypical example of an Archi- 
medean structure, and if any structure is going to be described as intrinsically 
Archimedean, then 8, certainly will. It is interesting to ask if there are any other 
intrinsic Archimedean structures, not isomorphic to 8,, that are positive, asso- 
ciative, and commutative. The following example is very instructive. 

EXAMPLE 2. Let p denote some object that is not a real number, and let R denote 
the set of nonnegative real numbers. Let (x,, . . . , xi, . . . ) denote the infinite 
sequence whose ith term is xi. Let B be the set of all sequences each of whose 
terms, except for one, is the element p; the exceptional one is an element of R. The 
notation 2; = (p, . . . , ai, p, . . . ) indicates both that the element of R is in the ith 
term of the sequence iii and that that term has the numerical value a,. Let A = B - 
(0, p, P, . . . ). Suppose ii,, 4, and t, are arbitrary elements of A. Define >_ and 0 
as follows: 

2, >_ 5 iff either i = j and a, r bi or i > j, 
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and 

2;06, = C, iff i + j = k and ai  + b, = c,. 

Let 8, = ( A ,  2, 0 ) .  Then 8, is a concatenation structure; ( A ,  >) is a continuum; 
and 8, is positive, associative, commutative, and ss-Archimedean. It is easy to 
show that 8, is not isomorphically imbeddable in ( R e f ,  2,  +). Although 8, 
satisfies ss-Archimdeanness, do we really want to call it Archimedean? Clearly, 
because of ss-Archimdeanness, it does not have one element infinitely larger than 
another (in terms of 0 ) .  However, the elements of the sets 

Ai = { i i  I 5, E A and ai E R )  

look like they are infinitesimally close to one another. 

2.3 Archimedeanness in Standard Differences 

However, how are we going to define what it means for Zi and 6 to be infi- 
nitesimally close in a context like Example 2? Given generic elements a and b, 
the usual way is to find an element c that represents their difference, (e.g., if a > 
b, then a = bOc) and show that some element ofA is infinitely large with respect 
to c. However, for elements of A,, no such c can be found, so this strategy is not 
immediately applicable. Another approach is to try to use an alternative axiom 
that Roberts and Luce (1968) proposed for extensive measurement structures for 
which solvability was not a postulated condition. It is this: A structure is said to 
be Archimedean in standard dzfferences, written sd-Archimedean, if and only if, 
for all x, y, u, v in A, if x > y, then there exists a positive integer n such that 

This axiom was motivated in Krantz, Luce, Suppes, and Tversky (1971, p. 
74) as follows (with the notation changed to ours): 

It should be noted that [the sd-Archimedean axiom] is, in fact, the ordinary 
Archimedean property for differences. For, if we define (x, y) > (u, v) to mean 
xOu 2 yov ,  then [the sd-Archimedean axiom] simply says that if (x, y) is 
positive (i.e., x > y) then for some positive integer n, 

n(x, Y) = (nx, ny) t (u, v). 

The problem with their motivation is in justifying the last equation. The 
inequality (nx, ny) 2 (u, v) does seem to capture adequately the idea that the 
difference between n copies of x and n copies of y is greater than or equal to 
the difference between u and v. However, this in itself is not sufficient to say that 
the difference between x and y is not infinitely close. To do that, one needs the 
equation n(x, y) = (nx, ny) which identifies n copies of the difference between x 
and y with the difference between n copies of x and n copies of y. However, this 
latter equation is not justified; it is simply taken as a definition of what n copies 
of the difference means. 
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Let us look at this problem in another way. Suppose x > y o z .  Then it is 
reasonable to say that the "difference between x and y  is greater than z." Using 
this concept of difference, we can formulate the idea of x and y  not being 
infinitely close by requiring that, for each element w, a positive integer n  can 
always be found for which n copies of z  exceeds w. This approach, which relies 
entirely on being able to find a z  such that x > y O z ,  fails when no such z  exists, 
as is the case for elements from A,. 

An obvious strategy is to attempt to extend (i.e., imbed) the structure %, to 
(in) a structure Ce,' = ( A ' ,  >', O r )  that allows one to find a z  such thatx > y O ' z  
whenever x > y. When x and y  belong to A,, this z  will belong to A' - A  and will 
be infinitesimally small with respect to elements of A  (i.e., if w is in A ,  then w > 
nz,  for all positive integers n). As an example, let A' = A  U R e + .  Extend 2 to 2 
' by requiring all elements of A  to be > ' all elements of Re + , and by requiring > 
' restricted to Re+ to be the usual ordering 2 on R e + .  Extend 0 to Or as 
follows: For all r  and s in Re +; and all 'ii and b, in A ,  

and 

rOf'ii = $ O ' r  = 6.  I iff i = j and ai + r  = b,. 

Then Re+ are the infinitesimals, and, for all x and y  in A' ,  if x >' y, then, for 
some z  in A ' ,  x 2' y O r z .  %,' is a concatenation structure that is positive, 
associative, commutative, but it is not ss-Archimedean. If we let (x,  y)  stand for 
the difference between x and y,  then, when x = y O ' z ,  z  = (x, y),  and, thus, 

and by using commutativity and associativity, it follows that 

and, thus, 

nz = (nx, ny).  

However, does the previous argument really justify assuming the sd-Archi- 
medean axiom? After all, one might just as well find a way of assigning infin- 
itesimal~ to appropriate differences in an extended structure that is not associative 
and not commutative so that the previous argument will not go through. The sd- 
axiom might be easier to justify by observing that, in Ce, ,  functions of the form 
y,(x) = nx preserve the relations Z and 0, that is for all x, y  in A ,  

x 2 Y  iff y,(x) 2 y,(y), 

and 
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Perhaps we should require, as is often done in considerations of meaningfulness, 
that structure-preserving maps extend to structure-preserving maps in the exten- 
sion (see Chapter 22 of Luce et al., 1990). If we do so in the case of extensions of 
%, that introduce infinitesimal differences, one retains n(x, y) = (m, ny) as 
before. This latter approach also applies to situations where the original opera- 
tion 0 need be neither associative nor commutative. It needs only to satisfy 
y,(xOy) = yn(x)0yn(y), a condition that often obtains, as we shall see. 

2.4 Associative Structures on the Continuum 

The following theorem can be shown: 

THEOREM 2.1. Let Z = (X,  2,  0) be a concatenation structure, (X,  2) be a 
continuum, and % be positive and associative. Then the following five statements 
are equivalent: 

1. % is isomorphic to (Re+, 2,  +). 
2. % satisfies the sd-Archimedean axiom. 
3. % satisfies the ss-Archimedean axiom and right restricted solvability 

(i.e., for all x, y in X, i fx  > y, then, for some z in X, x > yOz). 
4. % is right solvable in the sense that, for all x, y in X, ifx > y, then, for 

some z in X, x = yOz. 
5. % is homogeneous in the sense that for each x and y in 8, an auto- 

morphism3 P of % exists such that P(x) = y. 

This theorem and the previous discussion somewhat justify the following 
assertion: All intrinsically Archimedean concatenation structures that are 
positive and associative are isomorphic to (Re + , 2,  +) (and are, therefore, also 
commutative). 

The subtle interplay between the concepts of ss-Archimedeanness, right- 
restricted solvability, right solvability, homogeneity, and Dedekind com- 
pleteness, such as is described in Theorem 2.1 for the special case of a positive 
and associative operation, will be explored more generally throughout this chap- 
ter. Homogeneity will play an especially key role in our investigations. 

It is nearly trivial to see that statement 1 implies each of the others. Proofs of 
the converses were, we believe, first given in the following sources: Statement 2 
in Roberts and Luce (1968; see Theorem 3.1 in Krantz et al., 197 1); statement 3 
in Krantz et al. (1971, Theorem 3.3); statement 4 is a variant on a result for 
ordered groups due to Loonstra (1946; see Fuchs, 1963, p. 47; it also follows 
from Theorem 2.1 of Luce and Narens, 1985, which shows, in a far more general 

'An automorphism of a structure 2 is an isomorphism from 2 onto itself. 
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setting, that statement 4 implies ss-Archimedeanness); statement 5 is an un- 
published result of Michael Cohen (1986; among other things, it shows that, in 
certain instances, homogeneity implies right-restricted solvability). 

2.5 Additional Problematic Examples 

There are certain inherent difficulties in trying to classify more general structures 
as being Archimedean, as the following two examples make clear: 

EXAMPLES 3 and 4. Let @ be the following operation on Re + : 
x @ y = (x + y)l(l + xy), if x and y < 1; 
x @ y = x + y, otherwise. 

(Note that @, when restricted to the positive reals < 1, is the relativistic "addi- 
tion" formula for velocities less than the velocity of light-1 in this representa- 
tion.) Let 

It is easy to verify that @ is positive, commutative, and right restrictively 
solvable. It is not, however, ss-Archimedean, because n copies of '/z is < 1 for 
all positive integers n. Let 

%, and %, are very closely related: 8, is definable from the primitives @ and r 
of %, as  follow^:^ 

x + y = z i f f 3 w V u V ~ [ ( ~ < ~ & ~ < ~ - + u @ v < w ) , a n d  
(z  @ w )  @ w  = ( x @  w) @ 0, @ w ) ] .  

The structures %, and %, describe the same situation, %, in a little more redun- 
dant way. Thus, if one is to be Archimedean or nonArchimedean, then the other 
should be the same. Observe, however, that, in terms of @, 25, appears not to be 
Archimedean, whereas in terms of +, it does appear to be Archimedean. At this 
point, it is best not to call it either but to investigate further what the conse- 
quences might be in making such distinctions in general. 

2.6 Archimedeanness in Difference Sequence 

The simplest (and oldest) example of a qualitative concatenation structure is the 
classical model for additive physical quantities, called extensive, which was 

41n this definition, w is forced to have the value 1 ,  which acts like the velocity of light in the 
relativistic "addition" formula; however, by the way @ was defined, it follows that, for all x < I ,  x 
@ I f 1 rather than = I, which would follow from the relativistic formula. Furthermore, because 1 
is not among the primitives of Eg,, we cannot explicitly mention it in the definition. 
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described in Theorem 2.1. There the concept of ss-Archimedeanness is a direct 
analogue of the definition used in the real number system. Note that, because the 
structure is associative and commutative, it does not really matter how we 
compose n copies of x, because, for example, ((xOx)Ox)Ox, (xOx)O(xOx), 
and xO(xO(x0x)) are all equivalent. 

When it comes to working with general, nonassociative concatenation struc- 
tures, which are the ones of interest when any form of averaging is involved or 
when the variables have a factorial structure, as is often true in the behavioral and 
social sciences, there are at least two possible sources of trouble in defining 
Archimedeanness. 

The first is that, in the positive case which is the natural generalization of 
extensive structures, there are an indefinite number of distinct ways of defining 
an infinite standard sequence, and none seems outstandingly better than the 
others. The one commonly selected is the inductive definition given earlier, and, 
in one case of major interest (positive, right restrictely solvable, and homoge- 
neous), the choice is immaterial, because it implies the same property for all 
definitions of standard  sequence^.^ However, we have no proof that this is so in a 
completely general positive concatenation structure. This is an important open 
problem. 

The following example, due to Margaret Cozzens (personal communication), 
shows that the definition of a standard sequence definitely matters in some 
nonidempotent concatenation structures. 

EXAMPLE 5. Let 8, = ( R e + ,  2,  0). where, for x ,  y, z in Re + , x 0 y = z iff 
x + !hy = 2. 

By induction, it is not difficult to show that nr = x(n + 1)/2, but for x, defined 
by x, = x and x, = x @ x,- ,, then, by induction, x,, = x(2" - 1)/2"-' 5 h. 
Thus, it is Archimedean in nr but not in x,. 

The other trouble arises when we turn to the class of idempotent structures, 
typified by averaging, that are necessarily nonassociative but also are not 
positive. For such structures, standard sequences according to any definition of 
repeated combinations of an element with itself are all trivial, and so, in particu- 
lar, the definitions of ss- and sd-Archimedeanness are useless. An alternative 
adopted for such cases is to say that {x,) is a dijjerence sequence iff there exist u, 
v in X with v > u such that, for each n, x,Ou = x,- 'Ov. Then the structure is 
said to be Archimedean in difference sequences, abbreviated ds-Archimedean, if 
and only if each bounded difference sequence is finite. 

Vhe proof of this follows from the methods of proof used in Lemmas 2.4.8 and 2.4.9 of Narens 
(1985) or from similar theorems of Cohen and Narens (1979). which show how to translate Archime- 
dean-like conditions of the structure to its automorphism group and vice versa. 
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Note that this third concept of Archimedeanness is defined for all concatena- 
tion structures, including positive ones. Thus, one would like to know, for 
various general classes of positive structures, the implication relationships 
among the three Archimedean axioms. Observe that the standard sequence defi- 
nition really has bite only if the operation is quite generally defined, whereas the 
difference sequence definition has bite only if the structure is solvable in the 
sense that, given x, y E x with x < y, there exist z, z' in X such that 
x o z  = z 1 0 x  = y. 

2.7 Relations Among Three Concepts of 
Archimedeanness 

Two additional definitions are needed to formulate what is known about the 
relations among the three kinds of Archimedean axioms thus far considered: % = 

(X, 2, 0 )  is said to be uniformly, restrictedly right solvable if and only if, for 
each x, y, r, s in X with x < y and r < s, there exists z in X such that for all u in X 
for which r 5 u 5 s, (u0x)Oz 5 uOy. The n-copy operator nr  (n a positive 
integer) is said to be operation preserving if and only if, for all x, y in X, n(x0y) 
= nrony. 

THEOREM 2.2 (Luce, 1987, Theorem 3.3) Suppose 2 is apositive concatenation 
structure. 

(i). I f  X is uniformly, restrictedly right solvable, then ss-Archimedeanness im- 
plies ds-Archimedeanness. 

(ii). If L is right solvable, then ds-Archimedeanness implies ss-Archimedean- 
ness. 

(iii). Suppose L is restrictedly right solvable and the n-copy operators are opera- 
tion preserving for each positive integer n. Then the following is true: 

(a) ss-Archimedeanness implies sd-Archimedeanness; 
and 

(b) i f  X is order dense, then sd-Archimedeanness implies ss-Archimede- 
anness. 

It is worth noting that %, (Example 2) is ss-Archimedean but not ds- 
Archimedean. 

The next result establishes that, on the continuum, solvability is sufficient to 
get ss- and ds-Archimedeanness. 

THEOREM 2.3 (Luce & Narens, 1985, Theorem 2.1) Suppose %' is a Dedekind 
complete concatenation structure. If2 is positive and right solvable, then L is ss- 
Archimedean. I f  X is (right and left) solvable, then X is ds-Archimedean. 



3. CLASSIFICATION OF AUTOMORPHISM GROUPS 

3.1 Autornorphisrn Groups of PCSs 

One of the more striking discoveries about concatenation structures that are 
positive, ss-Archimedean, and restrictedly right solvable-the so-called 
PCSs-is that the Archimedeanness of the structure devolves to the important 
algebraic structure called the automorphism group, where an automorphism is an 
isomorphism of a structure with itself. (Physicists call automorphisms "symme- 
tries" of the structure.) Under function composition, the set of all automorphisms 
forms a mathematical group (closed and associative operation, an identity, and 
inverses). Moreover, a partial order can be imposed on the group in terms of the 
asymptotic behavior of the automorphisms as follows: if a and P are auto- 
morphisms, then a >' P if and only if there exists some x in X such that, for all y 
> x, a(y) > P(y) The relation >' is called the asymptotic ordering of the 
automorphism group. For PCSs, one can in fact show that >' is connected and 
much more: 

THEOREM 3.1 (Cohen & Narens, 1979, Theorem 2.3) If% is a PCS, then its 
automorphism group together with its asymptotic ordering is an Archimedean 
ordered group. 

Thus, by Holder's (1901) theorem, the automorphism group is isomorphic to 
a subgroup of the additive reals, and, therefore, it has a very simple structure, 
including being commutative. This comes as somewhat of a surprise, because 
PCSs are moderately weak structures when compared to the ordered structures 
generally encountered in algebra. Of course the most irregular of them have no 
automorphisms aside from the identity. In addition, some, for example, 

x o y  = x + y + ( ~ y ) ~ ,  

which from many points of view are highly regular, also have no nontrivial 
automorphisms. 

One can view a great deal of the recent work in measurement theory as 
exhibiting two major thrusts. The one that we are reporting on here attempts to 
gain a deeper understanding of the conditions for which some version of The- 
orem 3.1 holds for general relational structures other than PCSs. Although much 
is now known about this, there are still major gaps to be filled in. For example, 
we still cannot say anything general about the automorphism groups of arbitrary 
idempotent structures. Only by imposing additional restrictions do we get results 
of interest (see Sections 3.2, 4.1, and 4.6), both for concatenation structures and 
for much more general ones. 

The other approach is based on the fact that a good deal is known about the 
possible automorphism groups for structures defined on the continuum (see 
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Theorem 6.4). The strategy followed is to accept some fairly weak structural 
assumptions (e.g., those of a concatenation structure) and then attempt to charac- 
terize the resulting kinds of structures in terms of the possible kinds of auto- 
morphism groups. Such a strategy is effective because the automorphism groups 
are highly constrained, as is formulated in Theorem 6.4. This approach has been 
carried out to some extent for concatenation (see Theorem 4.3) and conjoint 
structures (Luce & Narens, 1985). 

3.2 Dilations, Translations, Homogeneity, 
and Uniqueness 

% = (X, >, S,) ,,, is said to be an ordered relational structure if X is a set, ), is 
a weak ordering of X (that is, a transitive and connected relation on X), J is a set 
of integers, and, for each j E J, S, is a relation on X of finite order. As was noted 
above, an automorphism of 2E is any isomorphism of the structure with itself. 

The most important classifications of automorphisms of a continuum so far 
discovered are of three main types. The first is the distinction between dilations, 
which are automorphisms with at least one fixed point (i.e., an element a in X 
such that &(a) = a), and the translations, which are those with no fixed point. It 
is convenient to treat the identity map as both a dilation and a degenerate 
translation. In terms of the familiar (nonnegative) affine transformations of the 
real numbers, the dilations are of the form a(x) = rx + s, where r is positive and 
# 1, or r = 1, and s = 0, and the translations are of the form a(x) = x + s. The 
major distinction between the two types of transformations is that, in terms of the 
asymptotic ordering, the translations are all infinitesimal relative to each dilation 
with r > 1. Furthermore, in terms of the asymptotic order and function composi- 
tion, the translations with s > 0 form a solvable ss-Archimedean extensive 
structure (or, put in algebraic terms, the entire set of translations form an Archi- 
medean ordered group). In the case of PCSs, all automorphisms are translations. 

The second distinction has to do with the scope of the action of the auto- 
morphism group or, put another way, with the extent to which symmetries exist. 
A subset X of automorphisms is said to be M-point homogeneous if and only if 
for each pair of similarly strictly ordered M-tuples of elements, there is an 
automorphism that maps the one M-tuple into the other. If the entire auto- 
morphism group is M-point homogeneous, then the structure itself is said to be 
M-point homogeneous. A structure that is M-point homogeneous for some M r 
1 is called homogeneous. In terms of the nonnegative affine transformations as 
the automorphism group of some structure, the translations are I-point homoge- 
neous, and the group itself is 2-point homogeneous. 

The third distinction has to do with the level of redundancy in the auto- 
morphism group. A subset X of automorphisms is said to be N-point unique if 
and only if whenever two automorphisms agree at N or more distinct points, then 
they agree everywhere. A structure is said to be unique if its automorphism group 
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is N-point unique for some finite N. In terms of the nonnegative affine group, the 
translations are 1-point unique and the entire group is 2-point unique. 

If the largest degree of homogeneity of a structure is M and the least degree of 
uniqueness is N, then the automorphism group is said to be of scale type (M, N). 
Thus, a homogeneous PCS, which can be shown to be isomorphic to a real PCS 
with all translations as its automorphism group (Cohen and Narens, 1979), is of 
scale type (1, 1). Any structure with the entire nonnegative affine group as its 
automorphism group is of scale type (2, 2). 

A major question is to understand fully the types of measurement structures 
that can arise in the sense of classifying the possible automorphism groups and 
then developing a description of classes of structures having those groups. This 
has been completed for all homogeneous and unique structures on the positive 
real numbers (Theorem 6.4) and is partially done for more general structures in 
which the translations form, as they do in the case just mentioned, a group that is 
both (1, 1) and Archimedean ordered. We first look into these questions for 
concatenation structures and then move on to more general ones. 

4. HOMOGENEOUS, UNIQUE CONCATENATION 
STRUCTURES 

4.1 Two General Results 

Our first result classifies both the structures and scale types that are possible for 
homogeneous and unique concatenation structures. 

THEOREM 4.1 (Luce & Narens, 1985, Theorem 2.2) Suppose 2 is a homoge- 
neous concatenation structure. Then 2 is either idempotent, weakly positive (fbr all 
X, XOX > x), or weakly negative (for all x, xOx < x). If % is also unique, then 
either N = 1 or both N = 2 and % is idempotent. 

We see, therefore, that, for homogeneous and unique concatenation struc- 
tures, the possible scale types are just (1, I), (1, 2), and (2, 2). At this level of 
generality, aside from the PCS case (Theorem 3. l), we know very little about the 
structure of the automorphism group. In particular, we would like to know when 
the translations form an Archimedean ordered group. One reason for interest in 
this question is the following: 

THEOREM 4.2 (Luce, 1987, Theorem 3.5) Suppose % is a concatenation struc- 
ture for which the set of translations forms a homogeneous, Archimedean-ordered 
group. Then the structure is ds-Archimedean and, if it is positive, it is also ss- 
Archimedean. 

As we shall see in Section 6, under these conditions, any ordered relational 
structure has a numerical representation of a particular type. 
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Before turning to such structures, some comment needs to be made about 
what it means to assume the translations form an ordered group. The group 
property can easily be shown to be equivalent to assuming the translations are 1- 
point unique (Luce, 1986, Theorem 2.1). The assumption that the asymptotic 
order is a total order is tantamount to assuming that the translations do not cross 
in the sense that there are x and y such that y(x) > x and y (y )  < y. (In the order- 
dense, Dedekind complete case, such crossing is impossible because it implies 
the automorphism has a fixed point.) 

4.2 Unit Concatenation Structures 

In the case of a homogeneous, unique concatenation structure on the positive 
reals-the Dedekind complete case-the operation has a particularly simple 
form: 

THEOREM 4.3 (Cohen & Narens, 1979; Luce & Narens, 1985, Theorems 3.9, 
3.12, and 3.1 3) Suppose 3 = (Re + , 2,  0) is a concatenation structure that is 
homogeneous and unique. Then there is a function f from Re + onto Re + that is 
strictly increasing, f(x)lx is strictly decreasing, and the operation 0 defined by 
x 0 y = yf(xly) is such that 3 is isomorphic to (Re+,  2,  0). 

Cohen and Narens (1979) called this kind of representation a unit (concatena- 
tion) structure. (They dealt only with the positive case; however, their methods 
and concepts extend to the general case, and this is expressed in Theorem 4.3.) 
The translations are simply multiplication by positive constants, and so they form 
an Archimedean-ordered group and Theorem 4.2 applies. It is easy to verify that 
the n-copy operators are of the form nr = @-'(I), and, thus, each is an 
automorphism. In particular, n ( x 0 y )  = nrOny. Section 6 will generalize the 
concept of unit structures to general ordered relational structures. 

For this class of structures, the following is true: 

THEOREM 4.4 (Luce, 1987, Corollary to Theorem 3.3) Suppose X is a positive 
(homogeneous) unit concatenation structure. Then, in addition to being ds- and 
ss-Archimedean, it is sd-Archimedean. 

5. INTRINSIC ARCHIMEDEANNESS: 
A POSSIBLE DEFINITION 

Examples 3 and 4, and even more pathological ones that can be easily devised, 
quickly lead one to the following conclusion: In an intrinsically Archimedean 
structure, every reasonable positive operation that is definable from the primi- 
tives should be sd-Archimedean. Of course, for this assertion to be effective, 
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"reasonable" and "definable" need to be given precise definitions-which will 
be done shortly. 

First, we consider what we might mean by reasonable. As Example 2 shows, 
ss-Archimedeanness and positivity by themselves are not effective in eliminat- 
ing infinitesimally close elements in a concatenation structure. Therefore, some 
additional or stronger conditions are needed. Theorem 2.3 suggests that right- 
restricted solvability might suffice. However, it is, in general, too strong a 
condition because there are structures with positive operations that are clearly 
Archimedean and are not right restrictedly solvable. As a case in point, consider 
the following: 

EXAMPLE 6. 8, = (Re+ ,  2, @'), where, for all x ,  y,  z in Re+ , x @' y = z if 
and only if 2 x  + 2y = z. In this structure, 1.5 > 1 ,  but 1 @' w > 1.5 for all w in 
Re+.  

The condition we shall focus upon in this chapter for capturing intrinsic 
Archimedeanness is homogeneity. At present, we do not have an adequate theory 
of intrinsic Archimedeanness for nonhomogeneous cases. For homogeneous 
structures with positive operations 0 on the continuum, we know, by the re- 
marks following Theorem 4.3, that the equation n(xOy) = many is valid for all 
elements x and y of the domain and all positive integers n. Furthermore, because 
of this and the earlier discussion of the sd-Archimedean axioms, we feel some- 
what confident about invoking the sd-Archimedean axiom as a necessary condi- 
tion for intrinsic Archimedeanness in homogeneous situations with positive oper- 
ations. (Observe that %, above is homogeneous and sd-Archimedean.) With 
these considerations in mind, we will, for homogeneous structures, adopt sd- 
Archimedeanness of definable positive operations as a critical characteristic of 
intrinsic Archimedeanness. However, it should be noted that, in some circum- 
stances, this requirement is empty because there may be no positive operation 
definable from the primitive relations that make up the structure. 

Second, we consider what we might mean by definable. Although there is no 
agreed upon general definition of what it means for a relation-in particular, an 
operation-to be definable in terms of given relations, for a number of specific 
concepts, it can be shown that the defined relation must be invariant under the 
automorphisms of the given structure, and it is widely agreed that any general 
definition should exhibit this property. Of course there may be invariant relations 
that are not definable, e.g., the relation may only exist through the Axiom of 
Choice. We make the invariance condition explicit. 

Let % and % be structures that have a common domain D. Then % is said to be 
invariant under the automorphisms of % if and only if, for each automorphism P 
of %, each n-ary primitive relation R of C and each a , ,  . . . , a, in D, the 
following is satisfied: 

R(al, . . . , a,) iff RIP(al), . . . , P(a,)l. 
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If the primitives of % are defined from the primitives of % through first-order, 
second-order, or any higher-order logic, then it can be proved that % is invariant 
under the automorphisms of %. (For a detailed description of the relationships 
between definability concepts and invariance, see Narens, 1988.) Thus, the 
structures with domain D that are "definable" from % are a subset of those that 
are invariant under the automorphisms of %. Further, because of this inclusion, 
invariance under automorphisms is a good generalization of first-order, second- 
order, and so forth definablity. 

A structure % = (X ,  2, R , ,  . . . ) is said to be intrinsically z-Archimedean, 
where z = ss, sd, or ds, if and only if the following hold: 

1. (X ,  2)  is a continuum. 
2. There exists a (positive) operation on X that is z-Archimedean and invar- 

iant under the automorphisms of %. 
3. Any other (positive) operation on X  that is invariant under the auto- 

morphisms of % is also z-Archimedean. 

The following striking theorem can be shown. 

THEOREM 5.1 Suppose B = (X, 2, R,, . . . ), the automorphisms of Z form a 
homogeneous, Archimedean-ordered group, and (X, 2) is a continuum. Then Z is 
intrinsically ss-, sd-, and ds-Archimedean. 

Theorem 5.1 is an immediate consequence of Theorems 4.2, 4.3, and 4.4. 
Although Theorem 5.1 covers some important cases, others are not covered. 

First, there are weakly positive structures that fail to be positive, so they are not 
covered. Some, such as Example 5, are decidedly ambiguous as to ss-Archime- 
deanness. Second, there are homogeneous idempotent structures for which no 
positive concatenation structure is automorphism invariant because they are of 
scale type (1, 2) or (2,2). Some of these structures are remarkably Archimedean, 
as, for example, (Re,  2 ,  O), where xOy = M(x + y). For these, we can at best 
expect to amve at ds-Archimedeanness. Toward that end, the next section inves- 
tigates the consequences of a relational structure having a homogeneous, Archi- 
medean ordered group of translations. 

6. HOMOGENEOUS, ORDERED RELATIONAL 
STRUCTURES 

The main result of this section characterizes, in terms of a particularly nice kind 
of numerical representation, those general, ordered relational structures whose 
translations form a homogeneous, Archimedean ordered group. As we saw in 
Theorem 4.2, these conditions on the translations of a concatenation structure 
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imply ds-Archimedeanness and, as will be seen shortly, lead to a numerical 
representation (which is one of the major reasons for invoking Archimedean- 
ness); therefore, it is possible that, for homogeneous structures, the property of 
the translations forming an Archimedean ordered group is a suitable generaliza- 
tion of Archimedean operations. An ultimate decision on this awaits a deeper 
understanding of Archimedeanness at the structural level when no operation is 
present as a primitive, which is partially clarified in Theorem 6.5. 

.6.1 Real Unit Structures 

To formulate the main result of the section, we need to give a generalization of 
the concept of a real unit structure, introduced for PCSs by Cohen and Narens 
(1979) and later generalized to all concatenation structures on Re + by Luce and 
Narens (1985) (see Theorem 4.3 of Section 4.2). We continue to use the same 
term in the general case. 

Suppose 93 = ( R ,  2,  Rj)j,,, where R c R e + ,  is a numerical relational 
structure. 93 is said to be a real unit structure if and only if there exists T c R e +  
such that the following conditions are met: 

1. T is a group under multiplication. 
2. T maps R into R.  

3. T restricted to R is the set of translations of 93 

THEOREM 6.1 [Luce, 1987, Theorem 5.1 .(i) and (ii)] Suppose % is an ordered 
relational structure. Then 2 is isomorphic to a real unit structure with a hoomge- 
neous group of translations if and only if the translations of % together with the 
asymptotic ordering form a homogeneous, Archimedean-ordered group. 

COROLLARY. I f ,  in addition, 2 is order dense, then the automorphism group of 
its unit representation is a subgroup of the nonnegative affine group restricted to R .  

As we saw in Theorem 4.3, real unit concatenation structures have a particu- 
larly nice form. 

A further equivalence to the translations forming a homogeneous, Archime- 
dean ordered group, one that is of great relevance to dimensional analysis, is 
given in Section 6.4. 

6.2 Dedekind Complete, Ordered, 
Relational Structures 

As we pointed out in the introduction, Archimedeanness captures the commen- 
surability but not the completeness (as far as limits of bounded sequences go) of 
the real numbers. That is embodied in the idea of Dedekind completeness (or 
equivalently the existence of least upper bounds within the domain). In this 
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section, we explore that property as a source of structure and how it interrelates 
with homogeneity and uniqueness. 

THEOREM 6.2 (Luce, 1987, Theorem 4.1) Suppose = (R,  2,  Rj),,, is a real 
unit structure. Then the following are true: 

(i). 3 can be densely imbedded in a Dedekind complete unit structure a*, where 
this imbedding is the identity. 

(ii). Each automorphism of extends to an automorphism of a*. 
(iii). If the group T of translations of % is homogeneous, then the domain of a* is 
Re + , and the group F of translations of a* is homogeneous. 

The next result gives a condition in the Dedekind complete case that leads to 
the translations being Archimedean. 

THEOREM 6.3 (Luce, 1986, Theorem 2.4; Luce, 1987, Theorem 2.1) Suppose % 
is a Dedekind complete, ordered relational structure. If the translations form a 
group (i. e., are 1 -point unique) and are uncrossed, then they form an Archimedean 
ordered group. A suficient condition for them to be uncrossed is that % also be 
order dense. 

If homogeneity is also satisfied, then we know by Theorem 6.1 that the 
structure is isomorphic to a homogeneous unit structure. 

Our last result on Dedekind complete structures considers what happens when 
we add the further condition that the structure is unique. We do not know very 
much about the uniqueness of general real unit structures, but in the homoge- 
neous case, we have strong results. (Note that the following theorem states that 
the translations form a group, which is surprisingly hard to show.) 

THEOREM 6.4 ( Alper, 1987, Theorem 3.10) Suppose % is a relational structure 
that is Dedekind complete, order-dense, homogeneous, and unique. Then the 
translations form a homogeneous, Archimedean ordered group, and % is iso- 
morphic to a real unit structure that has a subgroup of the nonnegative afine 
transformations as its automorphism group. Thus, the structure is 1- or 2-point 
unique. 

This important result is the culmination of work begun by Narens (1981a, 
198 1 b) for the (M, M) scale types and extended by Alper (1 985) to the (M, M + 
I )  case. What it shows is that homogeneous and unique structures that can be 
mapped onto the reals are of just three scale types-(1, 1) or ratio scale, (2, 2) or 
interval scale, and the in-between (1, 2) case. An example of the later is the 
group of discrete interval scales of the form x + P x  + s, where k > 0 is fixed 
and n ranges over the integers. 

It is clear, especially in view of Theorem 6.1, that we should try to gain a 
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better understanding of the uniqueness of homogeneous, real unit structures 
whose domains are not Re + . 

6.3 Intrinsic ds-Archimedeanness 

We may use the previous results, in particular Theorems 4.3, the corollary to 
Theorem 6.1, and Theorem 6.4, to get the following, quite general characteriza- 
tion of intrinsic ds-Archimedeanness. 

THEOREM 6.5 Suppose B = ( X ,  2, R,),,, is a relational structure that is 
homogeneous andfinitely unique, and suppose ( X ,  2) is a continuum. Then X is 
intrinsically ds-Archimedean. 

It is important to note that, for the property of ds-Archimedeanness to be 
nontrivial, it is necessary that an unbounded ds-sequence exist, and, for that to 
be so, some form of solvability must be satisfied. This means that Theorems 6.5 
and 5.1, although apparently parallel, have somewhat different significance, 
because, in the positive case, both ss- and ds-sequences always exist. 

It should also be pointed out that we do not have any generalization of 
Theorem 6.5 to, for example, structures that are not homogeneous but whose 
translations continue to form an Archimedean ordered group or to structures not 
on a continuum. Presumably some of these should continue to be considered to 
be Archimedean in some sense. 

6.4 Distribution of Unit Structures in Conjoint Ones 

Suppose % = (X x P, k), where > is a weak ordering (i.e., transitive and 
connected) of X x P. % is said to be a conjoint structure if and only if >_ exhibits 
monotonicity in each of the two factors (this is often called "independence") 
and, therefore, in an obvious way, induces weak orderings 2, on X and >, on 
P. A sequence {xi) from X is said to be standard if and only if there are p, q in P 
that are not equivalent under -p such that, for xi and xi+, in the sequence, 
(xi+ ,, p) - (x,, q). % is said to be Archimedean if and only if each bounded 
standard sequence is finite. There are a number of notions of solvability for 
conjoint structures, the simplest and strongest being that, given any three of x, y 
in X and p, q in P, the fourth exists that solves the equivalence (x, p) - 01, q). 
This form is called unrestricted solvability (Luce and Tukey, 1964). 

There have been two lines of work connecting conjoint structures with other 
structures. One, which we do not go into here, involves recoding the information 
embodied in the conjoint structure as an operation on one of its components. In 
the Archimedean case, these operations are very closely connected to PCSs, and 
the whole problem of representing conjoint structures numerically is readily 
reduced to that of PCSs. 
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The other line of work has been a series of gradually more general results of 
the following character: Suppose that one of the factors, say X, of an Archime- 
dean conjoint structure has on it a homogeneous structure with a homomorphism 
4 onto a real unit structure. Suppose, further, that this structure is suitably 
interconnected with the conjoint one according to a concept of distribution. Then 
the conjoint one is necessarily an "additive conjoint structure" with a multi- 
plicative representation of the form 4$. This was first shown to hold when that 
structure on X is extensive and distribution is defined for operations (Narens, 
1976; Narens & Luce, 1976); it was next extended to PCSs (Narens, 1981a; Luce 
& Cohen, 1983) and then further clarified for general closed concatenation 
structures (Luce & Narens, 1985) and ultimately put in the form given below for 
homogeneous real unit structures (Luce, 1987). The interest in the result is 
mainly embodied in the second result of this section that shows how the structure 
of physical units can be extended to incorporate these unit structures. 

To state the results, we first formulate, in a very general fashion, the notion of 
a structure on one component being compatible with the conjoint structure. Two 
n-tuples of X, (x,, . . . , x,) and (y,, . . . , y,), are said to be similar in % if and 
only if there exist p, q in P such that, for each i = I ,  . . . , n, (xi, p) - (y,, q). 
(For example, any n-term subsequence of successive terms of a standard se- 
quence and the subsequence obtained by shifting the indices up by one are 
similar.) Note that similarity is not transitive. Let S be a relation of order n on X. 
S is said to distribute in % if and only if, for each similar pair of n-tuples, when 
one is in S ,  then so is the other. An ordered relational structure % = (X, >,, 
Sj)j,, is said to distribute in % if and only if, for each j in J, Sj distributes in %. 
(Note it is easy to show that >, always distributes in %.) 

THEOREM 6.6 [Luce, 1987, Theorem 5.1 .(ii) and (iii)] Suppose 2 is a densely 
ordered relational structure and its set of translations, 9, forms a group. Then 9 is 
a homogeneous, Archimedean ordered group if and only i f  there exists an Archime- 
dean, solvable, conjoint structure C and a relational structure 2' on X such that 2 
and %' are isomorphic and 2' distributes in C .  In this case, C satisfies the 
Thomsen condition6 leading to a multiplicative representation. 

Note that the condition of 3 being a homogeneous, Archimedean ordered 
group is identical to that of Theorem 6.1, and, therefore, it says that a homoge- 
neous, real unit structure is distributive in some multiplicative conjoint structure. 
Thus, the two results bring together three important ideas-real unit structures, 
distribution in a conjoint structure, and Archimedean ordered translations-that 
are not obviously linked, and it shows that, in the homogeneous case, they are 
equivalent ideas. 

Perhaps the most important aspect of this is that it makes clear the circum- 

61f (x ,  r )  - ( u ,  q) and ( u ,  p) - ( y ,  r),  then (x ,  p) - ( y ,  q). 
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stances under which nonadditive, numerical scales can be introduced into the 
dimensional structure of physics. To this end, we have the following result. 

THEOREM 6.7 (Luce, 1987, Theorem 5.2). Suppose % = (X x P, )) is a 
conjoint structure that is solvable and Archimedean. Suppose, further, that 2 = 
(X, kx, Sj),,, is a relational structure whose translations form an Archimedean 
ordered group. 

(i). If8 is distributive in %, then 8 is 1 -point homogeneous and % satisfies the 
Thomsen condition. 
(ii). I f ,  in addition, 8  is Dedekind complete and order dense, then, under some 

mapping + from X onto Re+, 8  has a homogeneous unit representation and 
there exists a mapping JI from P into Re + such that +JI is a representation of %. 
(iii). I f ,  further, there is a Dedekind complete relational structure on P that 
distributes in an analogous way in % and there exists a homogeneous unit 
representation JI, then there exists a real constant p such that +JIp is a represen- 
tation of %. 
This yields the familiar representation of units of measurement as products of 

powers of other units that underlies the method of dimensional analysis (see 
Krantz, Luce, Suppes, & 'hersky, 1971, chapter 10; Luce, 1978). 

7.  NON-ARCHIMEDEAN STRUCTURES 

We will now discuss very briefly some of the metamathematical results that apply 
to the axiomatization of Archimedean structures. The first, and perhaps the most 
profound, is that Archimedeanness can never be expressed or even implied 
through first-order sentences. The proof is a very straightfonvard consequence of 
the Liiwenheim-Skolem Theorem7 of mathematical logic and does not depend in 
any interesting way on the particular concept of Archimedeanness used. 

Let 8 = (X, 2 ,  R,, . . . , R,) be an ordered relational structure. To make 
matters interesting, we assume X is infinite. Let 2 = 2 ( 2 ,  R1 ,  . . . , R,) be a 
first-order language that describes 8. Then, by the Upward Liiwenheim-Skolem 
Theorem, it follows that there exists a class A of models of 2 of arbitrarily high 
cardinality that have exactly the same true statements in 2 as 8. Because 8 is 
totally ordered and a "total ordering" is expressible in 2 ,  it follows that each 
model in A that has cardinality greater than the reals cannot be imbedded in a 
structure based on the reals, and, therefore, cannot be imbedded in any structure 
based on a continuum. Thus, in particular, they cannot be imbedded in any 
intrinsic Archimedean structure. Imbeddability into an intrinsic Archimedean 
structure is taken as an essential condition of Archimedeanness; therefore, it 

'Exact statement and proof of the Liiweheim-Skolem Theorem can be found in Narens (1985). 
Skala (1975), and Robinson (1963). 
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follows that those elements of M with domains of high cardinalities cannot be 
Archimedean. Furthermore, it is easy to show that there exists arbitrarily large X' 
= (X', k', R,', . . . , R,') in M (i.e., those that are "not cofinal with ow) such 
that, for each strictly increasing, positive operation 0 on X' and each x in Xf , 
there exists y in X' such that, for all positive integers n, y >' m. (Note that it is 
not assumed that 0 is monotonic or invariant under automorphisms of X'.) 

The previous results show that no reasonable concept of Archimedeanness can 
be captured in a first-order way. Thus, those who hold that empirical concepts 
can always be formulated in a first-order language must accept Archimedeanness 
as being necessarily nonempirical. 

The assumption of Archimedeanness, however, often has empirical conse- 
quences. The class % of positive, associative, restrictedly solvable concatenation 
structures is a good example of this. This class is axiomatizable through a first- 
order language. Some of the structures in % are Archimedean and represent 
widely used, important empirical situations; others are non-Archimedean. The 
following can be shown: (a) for structures in %, ss-Archimedeanness implies 
commutativity, and (b) there are structures in % that are not commutative. Note 
that it follows from (a) and (b) that, for elements of %, noncommutativity-a 
first-order and often an empirically verifiable condition-implies non-Archime- 
deanness. However, it can also be shown (using the Robinson model com- 
pleteness test) that the subclass 9 of elements of % that are divisible-that is, 
first-order statements of the form V x 3 y(ny = x) are true for all positive integers 
n-commutative and solvable have the same first-order consequences in the 
presence of the assumption of Archimedeanness as they would without it. In fact, 
it can be shown that the theory 9 is complete in the sense that a first-order 
sentence is true about one of its elements if and only if it is true about all of its 
elements. 

The upshot of these results can be summarized as follows. If we take first- 
order expressibility as a necessary characteristic of empirical, then we have the 
following: (a) Archimedeanness (in an infinite setting) is never an empirical 
consequence; (b) non-Archimedeanness is sometimes an empirical consequence; 
(c) in some empirical situations, the assumption of Archimedeanness adds new 
empirical consequences; and (d) in some empirical situations, the assumption of 
Archimedeanness adds no new empirical consequences. Clearly statement (d) 
characterizes a highly desirable state of affairs. We do not know, however, how 
generally it applies to situations that one is likely to encounter in science. 

8. CONCLUSIONS 

The issue addressed in this paper is what Archimedeanness might mean for 
ordered structures that may not include operations. The solution proposed first 
involves defining the intrinsically Archimedean structures. These we take to have 
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continua as domains. Structures that are densely imbeddable in them are consid- 
ered to be the Archimedean ones, or, in other words, a structure is said to be 
Archimedean if and only if it has a Dedekind completion that is an intrinsic 
Archimedean structure. Therefore, the issue is what the latter means. 

Intrinsically Archimedean structures we take to be ones to which we can 
adjoin operations that have two essential features: (a) They have enough structure 
themselves to be viewed as Archimedean (e.g., they are monotonic and satisfy 
some strong form of Archimedeanness); and (b) they are invariant under the 
automorphisms of the given structure. The justification for (b) rests on the 
observation that all operations definable in terms of the primitives of the structure 
are invariant under the automorphisms of the structure, so such invariance can be 
viewed as a generalization of definability. 

For homogeneous structures on the continuum, we argue that the class of unit 
structures are suitable for testing the Archimedeanness of the given structure. In 
the positive case, these structures can be shown to satisfy all three versions of 
Archimedeanness that have been proposed for positive structures: in standard 
sequences, in standard differences, and in difference sequences. In the idempo- 
tent case, we do not have equally satisfactory results, partly because our current 
concepts of Archimedeanness for this case are nontrivial only if a solvability 
condition is satisfied. 

With these unit structures as our criterion, it can then be shown that a homoge- 
neous ordered structure on a continuum is Archimedean if and only if its transla- 
tions (i.e., automorphisms with no fixed point plus the identity) form an Archi- 
medean ordered group (where the group ordering is naturally induced from the 
ordering of the structure). This kind of structure has been shown to have nice 
numerical representations and to be exactly the class of structures that can be 
incorporated into the structure of dimensions that arose in classical physics. 

Although we have succeeded in pinning down a general and sensible concept 
of Archimedeanness for those structures that can be extended to a homogeneous 
structure on a continuum, we do not at this time know much at all about the 
Archimedeanness of structures that cannot be so extended. 
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